

Decision Transformer: Reinforcement Learning via Sequence Modeling (Atari Game)

Team Members: Jianglong Yu, CS, Master Xin Yi, CS, Master

Michael Xu, ECEN, Master Lipai Huang, CVEN, PhD

Jianglong Yu	Lead Decision Transformer Reproduction & Model Tuning
Xin Yi	Model Improvement
Michael Xu	Decision Transformer Reproduction
Lipai Huang	Pre-Trained Data Collection & Code Testing

Motivation

- Power of Transformer [1]
- Traditional RL challenges
 - O Complexity in Learning Algorithms, Temporal Credit Assignment, Reward Sparsity
- Why Decision Transformers [2]
 - Sequence Modeling Approach
 - Direct Learning from Trajectories
 - Handling Long Sequences

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
 Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." Advances in neural information processing systems 34 (2021): 15084-15097.

Introduction

- DT Architecture
 - Embeddings
 - Causal Self-Attention
- Atari Game
 - Pong
- DT to Atari Game
 - Strategy Optimization
 - Model Pruning

Figure 1: Decision Transformer architecture.

Figure 2: Atari Pong game Sample. URL: https://www.gymlibrary.dev/environments/atari/pong/

Markov Decision Process in Pong Game

Traditionally, an MDP is described by the tuple (*S*, *A*, *P*, *R*), which consists of states $s \in S$, actions $a \in A$, transition probability P(s'|s,a), reward function r = R(s,a). The goal of learning is to learn a policy that maximize the $\mathbb{E}\left[\sum_{t=1}^{T} r_t\right]$.

Model-based RL

Predicts the next state and reward for each action taken in a given state. Eg, Dyna-Q, Monte Carlo tree search

Q-learning

Model-free RL, Value-based RL, the agent learns the value of each action for each possible state in the environment through the Q-function Q(s,a)

Eg, DQN, Double DQN, Duel DQN

Policy Gradient Methods

Model-free RL, Policy-based RL, the agent directly learns a policy that dictates the probability of selecting an action in a given state by a policy function, $\pi\theta(a|s)$.

Eg, REINFORCE, Actor-Critic Methods, Proximal Policy Optimization.

Decision Transformer

Different from traditional reinforcement learning. It employs Transformer to directly learn the actions that the agent should take using a sequence-to-sequence model, rather than focusing on learning strategies or value functions.

1 Fire 2 Move right

Discrete action space.

Behavior

No operation

States

Fully observable, as the entire playing area is visible and can be completely accounted by the input image in grayscale.

 $[[0 \hdown 0] \hdown 0]], [[255 \hdown 255] \hdown 255]], (84, 84), uin 8$

Action

3

4

5

Behavior

Move left

Fire right

Fire left

Rewards

+1 when get the ball across the opponent

-1 when the player misses the ball

Actions

Action

0

Decision Transformer

- Based on minGPT
- Model Input
 - State
 - \circ Action
 - Reward to go(rtg)
 - Timesteps

Decision Transformer

Engineering

- Embedding
 - States: Using CNN
 - Action: Embedding Matrix
 - Reward to go: Single-layer linear network
- Generate a sequence of tokens
 [s], [a], [R] → [R, s, a, R, s, a, ...]
- Position Embedding
- MultiHead Masked Self-Attention
- MLP
- Add & Norm

Training

DQN Replay Dataset

- Agarwal, R., Schuurmans, D. & Norouzi, M. (2020).
 An Optimistic Perspective on Offline Reinforcement Learning International Conference on Machine Learning (ICML).
- Data Process
 - Game frames Stacking
- Loss Function
 - Cross-entropy loss function
- <u>Arcade-Learning-Environment(ALE)</u>

Reinforcement Learning with Online Interactions

Offline Reinforcement Learning

Results

Evaluation

• Reward

Total return of 10 round: 120, Average return: 12.0 Total return of 10 round: 62, Average return: 6.2

[1] Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." Advances in neural information processing systems 34 (2021): 15084-15097.

Results

Training

• Pseudocode_[1]

Results

Ablation Study - Context Length

Context Length	Total Return	Average Return	
1	-129	-12.9	
10	-15	-1.5	
30	58	5.8	
40	115	11.5	
50	120	12.0	

- RL and MDP traditionally need context length = 1
- Decision transformer performs *significantly* better with *longer context length*
- Hypothesis:
 - Helps model identify which policy generated previous context
 - Better estimate policy distribution
 - Longer context length allows model to capture temporal dependencies

Model Pruning

Apply L1 unstructured pruning to all convolutional layers and linear layers. Trade-off between efficiency and accuracy.

Pruning Rate	No pruning	0.01	0.1	0.2
Average Return	12.7	12.1	7.1	-18.9
Inference Time per Step(ms)	6.79	6.74	6.12	5.97

Conclusion

- We reimplemented and proposed improvements on Decision Transformer, which outperforms strong offline RL algorithms
- Scope change
- Our improvements on Decision Transformer
 - Learning rate decay, optimizing for Atari Pong, memory efficiency
- Future Work:
 - Test and compare DT in online RL settings
 - Sophisticated embeddings return distribution

Thank you

