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Background

Arithmetic coding: Huffman coding...
Entropy Model: pŷ(ŷ)
- Represented as a joint, or even fully factorized, distribution
Actual marginal distribution of the latent representation: m(ŷ)
- distribution of the image being encoded
- distribution of method used to infer the alternative representation y
Shannon cross entropy between the two distributions:

R = Eŷ∼m[− log2 pŷ(ŷ)]
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Background

Side Information:
additional bits of information sent from the encoder to the decoder

indicate the entropy model to reduce the mismatch between the model and
the actual distribution

Using VAE to minimize the total expected code length by learning to balance the
amount of side information with the expected improvement of the entropy model.
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Variational AutoEncoder

Figure: Architecture of VAE

Reconstruction Loss: Measuring the difference between the original input
data and the data reconstructed through the VAE decoder

Lrecon =

N∑
i=1

∥xi − x̂i∥2

KL Divergence: Measurement of the difference between the latent
distribution of the encoder output and the a priori latent distribution (usually
assumed to be the standard normal distribution)

Loss = Lrecon + β ·DKL = −Eq(z|x)[log p(x|z)]− β · KL[q(z|x) ∥ p(z)]
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Model Structure
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Loss function

Loss = Ex∼pxEỹ,z̃∼q[− log px|ỹ(x|ỹ)− log pỹ|z̃(ỹ|z̃)− log pz̃(z̃)]

− log px|ỹ(x|ỹ): distortion of the reconstructed image

− log pỹ|z̃(ỹ|z̃)− log pz̃(z̃): cross entropies encoding ỹ and z̃

− log pz̃(z̃): side information
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Result
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Denoise Diffusion Model

q(xn|xn−1 = N (xn|
√
1− βnxn−1, βnI);

pθ(xn−1|xn) = N (xn−1|Mθ(xn, n), βnI)

βn ∈ (0, 1)

L(θ, x0) = En,ϵ ∥ϵ− ϵθ(xn(x0), n)∥2

n ∼ Unif{1, ..., N}
ϵ ∼ N (0, I)

xn(x0) =
√
αnx0 +

√
1− αnϵ

αn =
∏n

i=1(1− βi)
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Encoder
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Loss

Ez∼e(z|x0)[− log p(x0|z)− λ log p(z)] ≤ Ez∼e(z|x0)[Lupper(x0|z)− λ log p(z)]

Lupper(x0|z) = −Ex1:N∼q(x1:N |x0)[log
p(x0:N |z)
q(x1:N |x0)

]
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Loss

Lupper(x0|z) ≈ Ex0,n,ϵ

∥∥∥∥ϵ− ϵθ(xn, z,
n

Ntrain
)

∥∥∥∥2

Lupper(x0|z) ≈ Ex0,n,ϵ
αn

1− αn

∥∥∥∥x0 − χθ(xn, z,
n

Ntrain
)

∥∥∥∥2
ϵ(xn, z,

n

N
) =

xn −√
αnχθ(xn, z,

n
N )

√
1− αn
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Loss

Ez∼e(z|x0)[− log p(x0|z)− λ log p(z)] ≤ Ez∼e(z|x0)[Lupper(x0|z)− λ log p(z)]

Lupper(x0|z) ≈ Ex0,n,ϵ
αn

1− αn

∥∥∥∥x0 − χθ(xn, z,
n

Ntrain
)

∥∥∥∥2
L = Ez∼e(z|x0)[Lupper(x0|z)− λ log p(z)]
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Optional Perceptual Loss

LPIPS(Learned Perceptual Image Patch Similarity):

1 Extract features from images(using VGG, or AlexNet)

2 Compute the differences across various feature maps(Using Euclidean
distance)

3 Weighted summation

More closely approximates human visual perception, especially effective in
handling complex textures and fine details.

Lp = Eϵ,n,z∼e(z|x0)[d(x̄0, x0]

Jianglong Texas A&M University 19 / 29



References Variational image compression with a scale hyperprior Lossy Image Compression with Conditional Diffusion ModelsDenoise Diffusion Model Model Structure Loss Decode Process Result

Optional Perceptual Loss

Lp = Eϵ,n,z∼e(z|x0)[d(x̄0, x0]

Lc = Ez∼e(z|x0)[Lupper(x0|z)−
λ

1− ρ
log p(z)]

L = ρLp + (1− ρ)Lc

ρ ∈ [0, 1) : trade-off between bitrate, distortion, and perceptual quality.
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Decode Process (diffusion process)

After get z from the compressor model
Init the start image:

Deterministic: xN = 0

Stochastic: xN ∼ N (0, γ2I)

DDIM:
xn−1 =

√
αn−1χθ(xn, z,

n

N
) +

√
1− αn−1ϵθ(xn, z,

n

N
)

χθ: image predict model (Unet)

βn ∈ (0, 1): variance schedule

αn =
∏n

i=1(1− βi)

ϵ(xn, z,
n
N ) =

xn−
√
αnχθ(xn,z,

n
N )√

1−αn
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Decode process structure: Train
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Decode process structure: Evaluate
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Two different types of metrics

Perceptual Metrics: These are mainly used to evaluate how the visual
quality of an image or video is perceived by the human eye. e.g. FID, LPIPS

Distortion Metrics: These metrics are primarily used to objectively measure
the technical quality of an image or video by calculating the difference
between the original and processed images to assess the degree of distortion.
e.g. MS-SSIM, PSNR
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Weighted file compare

γ = 0.8, ρ = 0, λ = 0.0032

ground truth

Reproduction
bpp = 0.8786

↑ PSNR = 78.3296
↓ LPIPS = 0.1553

Original
bpp = 0.7661

↑ PSNR = 76.5053
↓ LPIPS = 0.1485
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Result: Reproduction

γ = 0.8, ρ = 0, λ = 0.0032

bpp = 0.8786
↑ PSNR = 78.3296
↓ LPIPS = 0.1553

bpp = 0.3443
↑ PSNR = 84.0804
↓ LPIPS = 0.2313

bpp = 0.4735
↑ PSNR = 81.9689
↓ LPIPS = 0.2063
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Result

γ = 0.8, ρ = 0, λ = 0.0032

BPP VS PSNR BPP VS LPIPS
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Result
Different γ, bpp is same

γ = 0
↑ PSNR = 78.3296
↓ LPIPS = 0.1553

γ = 0.6
↑ PSNR = 77.6171
↓ LPIPS = 0.143

γ = 0.8
↑ PSNR = 77.0089
↓ LPIPS = 0.1342

γ = 1
↑ PSNR = 76.1467
↓ LPIPS = 0.1305
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Thank You!
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